
Black Paper

Security audit

Security review
Date : November 16th, 2023

1

Black Paper

Summary

I. Introduction..3
1. About Black Paper..3
2. Methodology...3

a. Preparation... 3
b. Review...3
c. Reporting...4

3. Disclaimer... 5
4. Scope...5

II. Vulnerabilities..6
CRIT-1 (RESOLVED) Front-running presale with SP consumption................................... 7
MAJ-1 (MONITORED) UNFT sale can be front run with SNFT burn................................. 9
MAJ-2 (RESOLVED) Unsafe external call..10
MED-1 (MONITORED) Mitigating signature reuse vulnerability.......................................12
LOW-1 (MONITORED) Missing protection against wrong transfer recipient................... 13
LOW-2 (MONITORED) CloprBottles contract address should be immutable.................. 14
LOW-3 (RESOLVED) Missing input checks... 15
LOW-4 (RESOLVED) Enhancing delegatecash usage in burnAndGrowStory function... 17
LOW-5 (RESOLVED) Useless type conversion... 19
LOW-6 (RESOLVED) Preventing self-burn NFT in burnAndGrowStory function............. 20
INF-1 (RESOLVED) Implicit visibility for MODIFY_FILL_PRICE_ROLE..........................21
INF-2 (RESOLVED) Function order in contracts structure... 22
INF-3 (MONITORED) Architecture of StoryPotion contract... 23
INF-4 (RESOLVED) tokenURI function comment issue...24
INF-5 (RESOLVED) Type consistency improvement in getFillPrice function................... 25
INF-6 (RESOLVED) Variable optimization and readability... 26

III. Second review notes...27
MED-2 (RESOLVED) ERC Interface support...27
MED-3 (RESOLVED) ERC4906 security considerations... 28
LOW-7 (RESOLVED) _beforeTokenTransfers override... 29

2

Black Paper

I. Introduction

1. About Black Paper
Black Paper has been created to help developer teams. Our goal is to help you to make your
smart contract safer.
Cybersecurity requires specific expertise which is very different from smart contract
development logic. To ensure everything is well fixed, we stay available to help you.

2. Methodology

a. Preparation
The project is an NFT based project where NFTs can interact with others to create stories.
CloprBottle NFTs enhance the value of any NFT by enabling ownership of customized
derivative assets across ecosystems.

A first technical meeting was held on 31/10/2023. It allows technical teams to explain the
contract workflow, to define the exact scope, and start the audit process. Regarding the
short deadline, Black Paper team was continuously interacting with the technical team to
allow the best result in terms of security.

b. Review
Before manually auditing, we pass contracts into automatic tools. This allows us to find
some easy-to-find vulnerabilities.
Afterward, we manually go deeper. Every variable and function in the scope are analyzed.

You can find many articles on the lesson website. Here is a snippet list of what we test :
● Constructor Mismatch
● Ownership Takeover
● Redundant Fallback Function
● Overflows & Underflows
● Reentrancy
● Money-Giving Bug
● Blackhole
● Unauthorized Self-Destruct
● Revert DoS
● Unchecked External Call
● Gasless Send
● Send Instead Of Transfer
● Costly Loop

3

https://www.black-paper.xyz/lessons

Black Paper

● Use Of Untrusted Libraries
● Use Of Predictable Variables
● Transaction Ordering Dependence
● Deprecated Uses

This is not an exhaustive list since we also focus on logic execution exploits, and help
optimizing gas price.

c. Reporting
Every point in the code is subject to internal discussions with the team. At this stage, a
majority of the probable issues have already been identified and documented.

Post the completion of the code review, analysis, and testing, we prepare a report which
contains for each vulnerability :

● Explanation
● Severity score
● How to fix it / Recommendation

Here are severity score definitions.

Critical A critical vulnerability is a severe issue that can cause significant damage
to the contract and its users. These vulnerabilities are easy to exploit and
can result in the loss of funds, theft of sensitive data, or other serious
consequences. Immediate attention is required to address these
vulnerabilities.

Major A major vulnerability is an issue that can cause significant problems for
the contract and its users, but not to the same extent as a critical
vulnerability. These vulnerabilities are also easy to exploit and may result
in the loss of funds or other negative consequences, but they can be
mitigated with timely action.

Medium A medium vulnerability is an issue that could potentially cause problems
for the contract and its users, but the difficulty to exploit is higher than
major or critical vulnerabilities. These vulnerabilities may pose a risk to
the contract's functionality or security, but they can be addressed without
causing significant disruption.

Low A low vulnerability is a minor issue that does not pose a significant risk to
the contract or its users. These vulnerabilities are difficult to exploit and
may be cosmetic or technical in nature, but they do not compromise the
contract's security or functionality.

4

Black Paper

Informational An informational finding is not a vulnerability but rather a suggestion or
recommendation for improvement. These findings may include best
practices for contract design, suggestions for improving code readability,
or other non-critical issues. While not urgent, addressing these findings
can help to optimize the contract's performance and reduce the risk of
future vulnerabilities.

3. Disclaimer
In this audit, we sent all vulnerabilties found by our team.We can’t guarantee all
vulnerabilities have been found.

4. Scope
The following smart contracts are considered in scope:

● CloprBottles.sol
● CloprStories.sol
● StoryPotion.sol
● ICloprBottles.sol
● ICloprStories.sol
● IPotionDelegatedFillContract.sol
● IStoryPotion.sol

Other libraries and smart contracts are considered safe.

5

Black Paper

II. Vulnerabilities

Critical
1 critical severity issue was found:

- CRIT-1 (RESOLVED) Front-running presale with SP consumption

Major
2 major severity issues were found:

- MAJ-1 (MONITORED) UNFT sale can be front run with SNFT burn
- MAJ-2 (RESOLVED) Unsafe external call

Medium
3 medium severity issue were found:

- MED-1 (MONITORED) Mitigating signature reuse vulnerability
- MED-2 (RESOLVED) ERC Interface support
- MED-3 (RESOLVED) ERC4906 security considerations

Low
7 low severity issues were found:

- LOW-1 (MONITORED) Missing protection against wrong transfer recipient
- LOW-2 (MONITORED) CloprBottles contract address should be immutable
- LOW-3 (RESOLVED) Missing input checks
- LOW-4 (RESOLVED) Enhancing delegatecash usage in burnAndGrowStory function
- LOW-5 (RESOLVED) Useless type conversion
- LOW-6 (RESOLVED) Preventing self-burn NFT in burnAndGrowStory function
- LOW-7 (RESOLVED) _beforeTokenTransfers override

Informational
6 informational severity issues were found:

- INF-1 (RESOLVED) Implicit visibility for MODIFY_FILL_PRICE_ROLE
- INF-2 (RESOLVED) Function order in contracts structure
- INF-3 (MONITORED) Architecture of StoryPotion contract
- INF-4 (RESOLVED) tokenURI function comment issue
- INF-5 (RESOLVED) Type consistency improvement in getFillPrice function
- INF-6 (RESOLVED) Variable optimization and readability

6

Black Paper

CRIT-1 (RESOLVED) Front-running presale with SP consumption
Impact: Critical

Description:
The technical team of the project has already identified a vulnerability where SP (Story
Potion) is consumed just before selling the NFT, leading to potential malicious activities
such as front-running and offers acceptance after emptying the bottle.

This vulnerability results in a mismatch between the buyer's payment and the actual value of
the empty bottle. Letting the responsibility of buyers to be careful is not possible since they
currently can’t protect themselves from this vulnerability.

Note that this issue is also impacting the fill before selling. Because the value of the bottle is
expected to increase in this specific case, we consider it less important.

Recommendation:
We recommend to implement a transfer function restriction disallowing transfers for a
specific duration or number of blocks after emptying a bottle.

A technical solution could be to add a lastEmptyBlock variable in the BottleInformation
struct, and update it each time the bottle is emptied. For each transferFrom, check that
block.number - lastEmptyBlock > x, where x is the number of blocks where we assume
it is the responsibility of users.

7

Black Paper

To prevent the case where the bottle is filled up, the lastEmptyBlock variable can be
extended to lastEmptyOrFillBlock.

Status:
The fix is implemented, following recommendations.

8

Black Paper

MAJ-1 (MONITORED) UNFT sale can be front run with SNFT
burn
Impact: Major

Description:
The technical team has already identified a vulnerability where the SNFT (Story NFT) is
burned before selling the UNFT (underlying NFT). This loophole enables a user to retain the
SNFT's value by transferring its pages to another story owned by a different UNFT and
subsequently selling the UNFT at a premium, falsely implying that the SNFT is included in the
purchase.

In scenarios where an NFT with an attached story is listed for sale on a marketplace, users
naturally expect to receive the associated story upon purchase. However, the seller can
exploit the system by front-running the buyer's transaction, burning the history attached to
the NFT. Consequently, the buyer is left with only the NFT, devoid of any accompanying
history.

Recommendation:
We recommend developing a custom marketplace with an Escrow contract allowing the
buyer to specify whether the UNFT should come with a story or not. Upon execution, the
escrow contract can verify the UNFT's state, as requested by the buyer, and revert the
transaction if the conditions are not met.

Status:
The fix will be included in the future. For now, there is no escrow contract/marketplace to
prevent front-running on sale.

9

Black Paper

MAJ-2 (RESOLVED) Unsafe external call
Impact: Major

Description:
In the current implementation, there is a potential vulnerability where a malicious user can
send a SNFT to a smart contract (and his underlying NFT). For example, this smart contract
can be an escrow contract for selling NFT. Even if the escrow smart contract becomes the
owner, thye malicious user can still burn it and grow another story within the same
transaction. In the case of an escrow contract or many other usages, this is a major source
of vulnerability.

This behavior arises from the external calls in the burnAndGrowStory function, and the
ownership check which is not performed just before the burn operation (ie using _burn
instead of burn).

Here is an example scenario.

Initial Conditions

● The malicious user owns a Story NFT (SNFT) represented by burnedTokenId, we will
call it “burnedToken”

● He deploys a malicious contract with a malicious ownerOf function. When the
ownerOf function is called, it transfers the “burnedToken” to the escrow contract.

Transaction Execution

1. The malicious user starts the transaction, calling the burnAndGrowStory function
with burnedToken as the first token to burn and the malicious contract as the
extended token.

2. In the burnAndGrowStory, it first checks if the malicious user is the owner of the
burnedToken.

3. It checks if the malicious user is the owner of the extended token, calling the
malicious contract at the same time.

10

Black Paper

4. burnedToken is transferred to the escrow contract.
5. The escrow contract sends tokens in exchange for the burnedToken.
6. burnedToken is burned.

Note that this malicious code is not in the burnedToken contract, but in the extendedToken.
The escrow contract has no way to prevent it.

Recommendation:
To mitigate this issue, we recommend to use the burn instead of the _burn function since it
is unsafe to assume the requester is the owner of the burnedToken during all the execution.

Status:
The technical team opted to swap ownerOf(burnedTokenId) and
ownerOf(extendedTokenId). This fix is also valid.

11

Black Paper

MED-1 (MONITORED) Mitigating signature reuse vulnerability
Impact: Medium

Description:
In CloprBottles contract, the _isWhitelisted function currently has a vulnerability in its
content hashing mechanism, potentially allowing users to reuse signatures across different
contracts.

Recommendation:
Replace the existing content hashing mechanism with a more secure version, including the
contract address in the hashed content.

Status:
This issue has chosen to be ignored in order to save gas during function execution. A lot of
attention will be applied on all signatures by modifying wallets for each mint phase.

12

Black Paper

LOW-1 (MONITORED) Missing protection against wrong
transfer recipient
Impact: Low

Description:
The contracts StoryPotion.sol, CloprStories.sol, and CloprBottles.sol currently use the
internal function _mint of the ERC721 standard. However, this function assumes the
receiver is either an Externally Owned Account (EOA) or a contract specifically designed to
receive NFTs. In cases where the recipient is a contract not built to handle NFTs, the NFT
faces permanent loss.

In CloprBottles.sol:

In CloprStories.sol:

In StoryPotion.sol:

Recommendation:
To prevent irreversible NFT loss and bolster security, it is recommended to replace the usage
of _mint with _safeMint throughout the mentioned contracts.

Status:
This issue has chosen to be ignored in order to save gas during function execution.

13

Black Paper

LOW-2 (MONITORED) CloprBottles contract address should be
immutable
Impact: Low

Description:
The variable BOTTLES_CONTRACT, representing the CloprBottles' smart contract address in
both CloprStories.sol and StoryPotion.sol, is currently declared as a constant. However,
being a constant necessitates manual changes before each deployment, posing a risk of
deployment issues.

Recommendation:
To enhance deployment flexibility and avoid modifying code intervention, it is advised to
replace the constant BOTTLES_CONTRACT with an immutable variable initialized in the
constructor.
The new declaration should be:

Status:
To conserve gas during function execution, this matter has been deliberately disregarded,
with careful attention planned for contract deployment.

14

Black Paper

LOW-3 (RESOLVED) Missing input checks
Impact: Low

Description:
The smart contract currently lacks comprehensive verification for 0 inputs, especially in
scenarios involving the contract owner. Ensuring robust input validation is essential not only
for preventing potential vulnerabilities but also for mitigating errors that may arise from
caller actions.

On StoryPotion.sol:
● baseUri_

● newPrice

● newBaseUri

On CloprBottles.sol:
● newPotionBaseUri

● potionFillContract, potionEmptyContract and potionBaseUri

● price, startTimestamp, endTimestamp, maxMintPerWallet and phaseSupply

15

Black Paper

On CloprStories.sol:
● startDefaultBaseUri

Recommendation:
We recommend verifying those values are not equal to the default value, depending on
variable type.

Status:
The fix is implemented for values that can’t be equal to zero.

16

Black Paper

LOW-4 (RESOLVED) Enhancing delegatecash usage in
burnAndGrowStory function
Impact: Low

Description:
The burnAndGrowStory function currently checks if NFTs are delegated to the delegatecash
smart contract. However, this check fails if msg.sender is the owner of one NFT and
delegates the other.

Recommendation:
To address this, we recommended modifying the function to accept two vault addresses
(burnedStoryVault and extendedStoryVault) and use separate variables
(burnedStoryRequester and extendedStoryRequester) to track the requesters for each
NFT.

17

Black Paper

Status:
The fix is implemented, following recommendations.

18

Black Paper

LOW-5 (RESOLVED) Useless type conversion
Impact: Low

Description:
In addNewPotion function, there are few useless address-to-address conversions. This
makes loss some gas for nothing.

Recommendation:
We recommend not using the address keyword in this case.

Status:
The fix is implemented, following recommendations.

19

Black Paper

LOW-6 (RESOLVED) Preventing self-burn NFT in
burnAndGrowStory function
Impact: Low

Description:
If a user specifies the same story ID for both burnedTokenId and extendedTokenId in the
burnAndGrowStory function, the story will be burned automatically without any protection.

Recommendation:
We recommend to add a condition that checks if the burnedTokenId and extendedTokenId
are different to prevent unintentional story burning.

Status:
The fix is implemented, following recommendations.

20

Black Paper

INF-1 (RESOLVED) Implicit visibility for
MODIFY_FILL_PRICE_ROLE
Impact: Informational

Description:
The variable MODIFY_FILL_PRICE_ROLE in the StoryPotion contract is implicitly of type
internal as its visibility is not explicitly specified.

Recommendation:
Specify the visibility of the variable to private.

Status:
The fix is implemented, following recommendations.

21

Black Paper

INF-2 (RESOLVED) Function order in contracts structure
Impact: Informational

Description:
All functions within the contract lack adherence to the recommended function order, as
outlined in the Solidity style guide (https://docs.soliditylang.org/en/latest/style-guide.html).
This order assists readers in identifying callable functions and locating the constructor,
receive function (if present), and fallback function (if present) more efficiently.

Recommendation:
Reorganize the functions in the contract structure following the recommended order:

1. Constructor
2. Receive function (if exists)
3. Fallback function (if exists)
4. External functions
5. Public functions
6. Internal functions
7. Private functions

Status:
The fix is implemented, following recommendations.

22

Black Paper

INF-3 (MONITORED) Architecture of StoryPotion contract
Impact: Informational

Description:
The primary functionality of the StoryPotion.sol smart contract is to act as a potion tank,
filling up potions and creating one associated NFT. However, the current design inherits from
ERC721 libraries, combining NFT creation and tank behavior within a single contract. To
enhance code readability and adhere to best practices, it is recommended to separate these
concerns into distinct smart contracts.

Recommendation:
Create a new smart contract specifically dedicated to handling the NFT functionality. This
separation will result in two distinct contracts—one for managing the potion tank behavior
and another for NFT creation—improving code organization and readability.

Status:
To maintain the same address for both the StoryPotion fill logic and the unique NFT, the
decision has been made to overlook this issue.

23

Black Paper

INF-4 (RESOLVED) tokenURI function comment issue
Impact: Informational

Description:
The comment for the tokenURI function incorrectly refers to a "Clopr Story" instead of the
correct term "Story Potion."

Recommendation:
Update the comment for the tokenURI function to accurately reflect its purpose.

Status:
The fix is implemented, following recommendations.

24

Black Paper

INF-5 (RESOLVED) Type consistency improvement in
getFillPrice function
Impact: Informational

Description:
In the StoryPotion.sol smart contract, the getFillPrice function currently has an unexplicit
conversion, returning a uint256 while the underlying variable fillPrice is a uint64. To
enhance consistency and avoid unnecessary conversions, the function should explicitly
return a uint64.

Recommendation:
Update the return type of the getFillPrice function to uint64.

Status:
The fix is implemented, following recommendations.

25

Black Paper

INF-6 (RESOLVED) Variable optimization and readability
Impact: Informational

Description:
In the BottleInformation struct of the smart contract logic, the potionFill variable is
currently represented as a uint8 with values of 100 for fill and 0 for empty. While it is
designed to accommodate future usage where different fill levels may be employed, if the
project intends to consistently use only 0 or 100, we recommend following our instructions
for optimization.

To optimize gas efficiency and enhance readability, it is suggested to replace the
potionFill variable with a boolean isFilled. This change not only improves gas efficiency
and readability but also helps prevent potential undiscovered issues in the future related to
uint calculations, especially if different StoryPotion contract implementations are introduced.
This enhancement ensures a clearer and more robust representation of the potion's fill
status.

Recommendation:
Update the BottleInformation struct by replacing potionFill with a boolean variable
isFilled.

Status:
The fix is implemented, following recommendations.

26

Black Paper

III. Second review notes

MED-2 (RESOLVED) ERC Interface support

Description:
The supportsInterface function lacks support for ERC4906 and ERC5192. It is crucial to
include these interfaces to ensure comprehensive compatibility.

Recommendation:
Include ERC4906 and ERC5192 in the supportsInterface function.

Status:
The status is now resolved as it has been fixed.

27

Black Paper

MED-3 (RESOLVED) ERC4906 security considerations

Description:
In light of ERC4906, a new function addressing security considerations related to off-chain
modifications of metadata should be added. This ensures that the contract adheres to
ERC4906 standards.

Recommendation:
We recommend to add a function in order to allow the owner to emit the MetadataUpdate
event.

Status:
The status is now resolved as it has been fixed.

28

Black Paper

LOW-7 (RESOLVED) _beforeTokenTransfers override

Description:
The decision to override _beforeTokenTransfers is considered beneficial for code
readability. However, it is essential to note a slight logic change in which any user must now
wait for 20 blocks to burn their NFT after emptying it.

Recommendation:
We recommend taking no action if it aligns with the end user's logic and is deemed
acceptable.

Status:
The technical team has reviewed and approved this modification, and the status is
confirmed as satisfactory.

29

